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Abstract. Excitation spectra arising from A30+ ← X10+ and B31 ← X10+ electronic transitions in the
Cd-rare gas (RG) van der Waals molecules are calculated using newly obtained theoretical potential curves
for these species. In the molecular structure calculations, Cd20+ and RG8+ cores are simulated by energy-
consistent pseudopotentials which also account for scalar-relativistic effects and spin-orbit (SO) interaction
within the valence shell. Potential energies in the ΛS coupling scheme have been obtained by means of
ab initio complete-active-space multiconfiguration self consistent-field (CASSCF)/complete-active-space
multireference second-order perturbation theory (CASPT2) calculations with a total 28 correlated elec-
trons, while the SO matrix has been computed in a reduced CI space restricted to the CASSCF level. The
final Ω potential curves are obtained by diagonalization of the modified SO matrix (its diagonal elements
before diagonalization substituted for the corresponding CASPT2 eigen-energies). The spectroscopic pa-
rameters for the ground and several excited states of the Cd–RG complexes deduced from the calculated
potential curves are in quite reasonable agreement with available experimental data. In addition, the radial
Schrödinger equation for nuclear motion was solved numerically with the calculated potentials to evaluate
the corresponding vibrational levels and radial wavefunctions. The latter have been used in the calculation
of the appropriate Franck-Condon factors to yield information on relative intensities of the vibrational
bands of the Cd–RG complexes. The theoretical vibrational progressions are discussed in the context of
experimental spectra.

PACS. 33.20.Tp Vibrational analysis – 34.20.-b Interatomic and intermolecular potentials and forces,
potential energy surfaces for collisions

1 Introduction

Weakly bound complexes of atoms and small molecules
have become the subject of numerous spectroscopic stud-
ies in recent years. A great deal of spectroscopic and dy-
namical information has been accumulated on the van
der Waals molecules formed of group IIb metal (M) and
rare gas (RG) atoms in the ground and excited states of
the former. Detailed information on these species deduced
from experimental measurements provides a better under-
standing of van der Waals bonding as well as interatomic
potentials. The latter are important for interpretation of
various dynamical processes such as collisional redistri-
bution of resonance radiation, collision-induced singlet-
to-triplet energy transfer, electronic orbital alignment, or
chemical reactions. Most spectroscopic studies on the M–
RG complexes were carried out using supersonic expan-
sion of the metal–RG mixtures from high pressure into
vacuum [1–10]. This experimental method serves both as
a way of formation and cooling of the van der Waals
molecules and permits the study of isolated diatomic com-
plexes through laser excitation and subsequent detection
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of fluorescence. The fluorescence excitation spectra ob-
tained in this manner are further analyzed by means of
the Birge-Sponer (B-S) method which uses a Morse func-
tion as representative for each of the potentials involved
in an electronic-vibrational transition. It is known, how-
ever, that vibrational levels near the dissociation limit of-
ten deviate from the linearity of the vibrational spacing
∆Gv+1/2 versus v, indicating that the Morse potential
is not adequate for the long-range part of the potential
curve. In such cases the Morse function is combined with
a proper term describing the long-range forces between
the two atoms to improve an analytical representation
of the potential energy curve. This also means that the
Birge-Sponer procedure works satisfactorily only near the
bottom of the potential well.

Majority of spectroscopic studies on the group IIb–
RG complexes are devoted to the Cd–RG and Hg–RG
complexes, and concern the molecular states correlating
asymptotically with the ground state and the lowest lying
3P1 and 1P1 excited states of the metal atom. Such stud-
ies usually provide the spectroscopic characteristics of the
potential curves involved in the electronic transition. On
the other hand, experimentally determined spectroscopic
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constants (De, Re, ωe) permit a straightforward verifica-
tion of theoretical interatomic potentials which are still
insufficiently known, in spite of substantial progress in
both theory and experiment. To our knowledge, so far
only three advanced quantum-mechanical calculations on
the interaction potentials for the group IIb–RG complexes
have been published. In the first study devoted to the Cd-
heavy RG atom (Ar, Kr, Xe) species, l-independent statis-
tical pseudopotentials were used to simulate both the Cd-
core and RG atoms [11]. For Cd and Hg interacting with
light RG atoms (He, Ne), the molecular calculations were
performed with more accurate l-dependent pseudopoten-
tials at the valence SCF/CI level [12]. Unfortunately, the
obtained theoretical potentials for the Cd–RG and Hg–
RG complexes differed appreciably from available experi-
mental data. This discrepancy was roughly interpreted as
due to a simplified treatment of the RG atoms in those
calculations. Certainly, taking into account the valence
electrons of the RG atoms in the molecular calculations
explicitly, could improve the description of the metal-RG
Pauli repulsion and better account for polarization effects
of the RG atoms on the metal atom. However, such ad-
vanced many-electron calculations have become feasible
only recently after substantial improvements in the ap-
plied software (MOLPRO) [13]. In our earlier work on the
Cd–RG species [14], the Cd and RG atoms were consid-
ered as two- and eight-valence electron systems, respec-
tively, whereas the Cd2+ and RG8+ cores were represented
by scalar-relativistic energy-consistent pseudopotentials.
In addition, a core-polarization potential was added to
the large-core pseudopotential for Cd to account for core-
valence correlation contributions. The computed potential
curves were split into Ω components in a semi-empirical
manner following the “atoms-in-molecules” model. Com-
parison of the derived spectroscopic parameters with their
experimental values indicated, in general, reasonably good
agreement of theory with experiment.

Recently, we have undertaken new molecular calcu-
lations on the group IIb–RG complexes, with the aim
of removing the still existing deficiencies of the theory.
In contrast to our previous calculations on the Cd–RG
pairs [14], the metal atom in the present approach is
treated as a 20-valence electron system. On the other
hand, the M20+ and RG8+ cores are substituted for ab ini-
tio scalar-relativistic energy-consistent pseudopotentials
supplemented by the corresponding spin-orbit (SO) op-
erators. A detailed description of the potential energy cal-
culations for the Cd–RG complexes with the complete pre-
sentation of the results obtained are given in a separate
paper [15]. This paper is devoted to the theoretical study
of the A30+ ← X10+ and B31← X10+ vibrational bands
of the Cd–RG van der Waals molecules obtained exclu-
sively on the basis of the calculated potential curves. This
also means that the present results are entirely free from
fitting to any experimental data. The calculated vibra-
tional bands are also discussed in the context of experi-
mental spectra. After a short presentation of the theory
and technical details of the calculations given in Section 3,
the results obtained will be discussed in Section 2.

2 Method

2.1 General formulation

The calculation of the adiabatic energies Ei(R) between
a group IIb atom (A) and a RG atom (B) in the Born-
Oppenheimer approximation reduces to the solution of the
Schrödinger equation

(HA +HB + VAB)Ψi(x,R) = Ei(R)Ψi(x,R), (1)

where HA and HB are the Hamiltonians of the isolated
atoms A and B, VAB stands for the interaction between
the two atoms, x represents the electronic coordinates,
while R is the position vector of B relative to A. In the
present approach the nsnpnd core electrons and (n + 1)
s(n = 4) valence electrons of the atom A are considered on
an equal footing. Consequently, the twenty valence elec-
trons of the atom A and eight valence electrons of the
atom B are treated explicitly, while the A20+ and B8+

cores as well as valence-shell scalar-relativistic effects and
SO interaction are represented by lj-dependent quasirela-
tivistic pseudopotentials. The valence model Hamiltonian
in (1) can be written (in atomic units) as

H = −1
2

∑
i

∆i + Vav + Vso +
N∑

j>i=1

1
rij

+
∑
λ>µ

QλQµ
rλµ

,

(2)

where i, j denote valence electrons, λ, µ are core indices
andQλ,Qµ represent core charges. The SO averaged pseu-
dopotential Vav, which accounts for scalar-relativistic ef-
fects, has the following semilocal form

Vav = −
∑
λ,i

Qλ
rλi

+
∑
λ,i

∑
l,k

Aλlk exp(−aλlkr2
λi)Pλl, (3)

where Pλl is the projection operator onto the Hilbert sub-
space of angular symmetry l with respect to core λ

Pλl =
l∑

m=−l
|λlm〉〈λlm|. (4)

In turn the pseudopotential representing the SO operator
takes the form

Vso =
∑
λ,i

∑
l

2∆Vi,λl
2l+ 1

PλllisiPλl. (5)

The difference ∆Vi,λl of the radial parts of the two-
component quasirelativistic pseudopotentials Vλl,l+1/2

and Vλl,l−1/2 is expressed in terms of Gaussian functions

∆Vi,λl =
∑
k

∆Aλlk exp(−aλlkr2
λi). (6)

In the case of small-core pseudopotentials the polarization
potential which describes, among others, core-valence cor-
relation effects is usually disregarded, because the dipole
polarizabilities of the cores are small. The last term in
equation (2) represents the core-core interaction. Since the
A20+ and B8+ cores are well separated, we choose a simple
point-charge Coulomb interaction in this case.
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2.2 Details of calculations

High-level valence ab initio calculations have been carried
out for the ground and several excited states of the Cd–
RG species. The cadmium and RG atoms in the present
approach are treated as 20- and 8-valence electron species,
respectively. The free parameters occurring in Vav and Vso,
defined by equations (3, 5, 6), for the Cd atom were taken
from [16]. The corresponding optimized primitive (8s7p6d)
basis set taken from [16] has been augmented with one
diffuse s-, p- and d-function. A polarization set of four
f -functions and two g-functions taken from [17] was also
added. The final contracted basis set for Cd used in the
calculations is designated as (9s8p7d4f2g)/[8s7p6d4f2g].
In turn the one-component relativistic energy-consistent
ab initio pseudopotentials for the RG atoms, supple-
mented with effective spin-orbit potentials, were taken
from Nicklass et al. [18]. For He we used the contracted
(13s8p5d3f)/[7s8p5d3f ] basis set with s-functions taken
from [19], p- and d-functions derived from [20] and f -
functions taken from the augmented correlation-consistent
polarized valence-quintuple-zeta (aug-cc-pV5Z) basis set
[21]. For Ne, Ar, Kr and Xe we started with the opti-
mized uncontracted basis sets taken from Nicklass et al.
[18] (7s7p3d for Ne, 6s6p3d otherwise). These basis sets
were augmented with diffuse s-, p- and d-functions de-
termined by means of even-tempered continuation of the
series of low exponents of the corresponding Nicklass’es
basis. In addition, three f -functions were added in each
case to improve description of the polarization of the RG
atoms. Finally, we used an uncontracted (9s9p4d3f) basis
set for Ne and a contracted [8s7p4d3f ] one for the remain-
ing RG atoms.

The potential energy curves have first been evaluated
in the ΛS coupling scheme by means of complete-active-
space multiconfiguration self-consistent-field (CASSCF)
calculations followed by complete-active-space multiref-
erence second-order perturbation theory (CASPT2) cal-
culations with an open-shell correction term to the one-
electron Fock operator as proposed by Werner [22]. The
active space is spanned by the molecular counterparts of
the valence 5s5p and Rydberg 6s6p orbitals of Cd in the
C2v point group. The molecular orbitals used in the calcu-
lations were determined in a state-averaged CASSCF with
the same weight for the ground and excited states. The va-
lence orbitals of the RG atom and the 4s4p4d orbitals of
Cd were kept doubly occupied in all configuration-state
functions (CSFs). However, they were fully optimized in
the CASSCF calculations and correlated through single
and double excitations from the reference configurations
in the CASPT2 calculations. The next step involves the
inclusion of spin-orbit coupling at the CI level. In the
present approach the SO matrix elements are computed
using the SO pseudopotentials for both the Cd and RG
atoms. The SO eigenstates are obtained by diagonaliza-
tion of the Hel +Hso matrix in a basis formed of selected
spatial configurations multiplied by appropriate spin func-
tions. The resulting products are grouped together accord-
ing to symmetry to form an appropriate matrix for each of
the four C2v double group representations. In the present

calculations the off-diagonal elements of the SO opera-
tor are computed employing the truncated version of the
CI space restricted to the CASSCF wavefunctions. How-
ever, to account for correlation effects at a higher level of
theory, the diagonal elements of the SO matrix before di-
agonalization were replaced by the precomputed CASPT2
eigen-energies. It has been found that the basis-set super-
position error (BSSE) is appreciable in the present calcu-
lations and has to be taken into account if the calculated
potential curves are to be used in a detailed analysis of
the Cd–RG vibrational spectra. BSSE has been eliminated
using the standard counterpoise method [23]. The calcu-
lations of the potential curves have been carried out using
the MOLPRO program code by Werner and Knowles [13].
More information on details of the molecular structure cal-
culations is given in [15].

In order to calculate the vibrational progressions for
the Hg–RG complexes, the radial Schrödinger equation
for nuclear motion was solved numerically by means of
the Numerov-Cooley method using the appropriate poten-
tial curve for each case. By counting the number of nodes
of the wavefunction resulting from the integration of the
Schrödinger equation we were able unambiguously to as-
sign a quantum number v to the calculated eigenvalue of
energy. The wavefunctions have been subsequently used in
the calculations of appropriate Franck-Condon (F-C) fac-
tors defining relative intensities of the vibrational bands.

3 Results and discussion

In this paper we discuss only the relevant potential curves
of the Cd–RG species correlating with the (5s2)1S ground
and (5s5p)3P1 excited states of the Cd atom. Due to a
large energy gap (31 246 cm−1) between the triplet state
and the ground state of Cd, the influence of the SO in-
teraction on the latter proves to be unimportant. How-
ever, the SO interaction becomes essential for the Ω-states
correlating to different fine-structure components of the
Cd (5s5p)3Pj triplet state. Two molecular states corre-
late asymptotically to the Cd 3P1 state. One of them la-
beled A30+ is a nearly pure 3Π state as a result of weak
interaction with the state of the same symmetry correlat-
ing to the Cd (5s5p)1P1 atomic state. The second state
labeled B31 is of mixed Σ−Π character due to SO cou-
pling. In consequence, the A30+ potential curve is much
deeper than the ground X10+ state, while exactly the re-
verse is true for the B31 state. Typically, two groups of
vibrational bands in the excitation spectra appear in the
red and blue regions of the intercombination line of the
group IIb metal-atom interacting with a RG atom in
the ground state. These bands are assigned to electronic
transitions from the ground state to the A30+ and the
B31 molecular states, respectively.

3.1 CdXe

The calculated ground-state potential curve for CdXe is
characterized by the potential well depth De = 192 cm−1
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Fig. 1. Potential curves for the ground X1Σ+ and two excited
A30+ and B31 states of CdXe.

(192 cm−1 [24]) and equilibrium position Re = 8.41a0

(8.09a0 [24]). Numbers in parentheses here and below de-
note the experimental values. The A30+ potential curve
exhibits a relatively deep minimum with De = 1040 cm−1

(1086 ∓ 40 cm−1 [4]) at Re = 6.18a0, and changes regu-
larly with increasing R approaching the dissociation limit
at about R = 20a0. Both the potential curves are plot-
ted in Figure 1. Figure 2a presents the Franck-Condon
factors (F-C overlap integral squared) calculated for the
A(v′)← X(v′′ = 0) transitions. As seen from the diagram,
the substantially larger from zero F-C factors comprise the
v′ ← v′′ = 0 transitions with v′ ranging from 13 to 21 of
a total 47 vibrational levels calculated for the A30+ state.
Comparing this diagram with the A← X fluorescence ex-
citation spectrum of CdXe reported by Kvaran et al. [4]
one finds very good agreement of theory with experiment.
One has to stress, however, that our diagram presents only
F-C factors and not full band intensities. Note also that
the Kvaran’s v′-assignment of the bands is given with an
uncertainty of ∆v′ = ±1. On the other hand, the B31
potential curve of CdXe, deviates appreciably from reg-
ularity as seen from Figure 1. This potential curve pos-
sesses a minimum at Re = 6.22a0 with De = 572 cm−1

(152 cm−1 [24]). With increase of internuclear separation
the potential curve has a shoulder at about Re = 8.5a0,
and next rises slowly towards the dissociation asymptote.
The calculated Franck-Condon factors for the B1 ← X
transition are shown in Figure 2b. As seen from the di-
agram, theory predicts here the v′ ← v′′ = 0 transitions
with v′ ranging merely from 10 to 14 of a total 35 vibra-
tional levels calculated for the B31 state. Since we are not

10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

0.2

0.25

F
ra

nc
k-

C
on

do
n 

fa
ct

or
 

7 8 9 10 11 12 13 1415 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

a

b

v
0

Fig. 2. Calculated Franck-Condon factors for: (a) A0+(v′)←
X(v′′ = 0), (b) B1(v′)← X(v′′ = 0) transitions in CdXe.

aware of any excitation spectra measured for the B1← X
transition of CdXe, our theoretical prediction cannot be
compared with experiment in this case. Large discrepancy
between the theoretical potential well depth and its ex-
perimental counterpart for the B1 state of CdXe can be
easily understood. In light of the present calculations, the
experimental value of De of the B1 potential for CdXe is
likely in error. According to the classical F-C principle,
only selective A← X electronic-vibrational transitions in
CdXe take place (large ∆Re = R

′′
e − R

′
e). This prevents

from precise determination of the excited-state potential
well depth. The calculated frequencies of the vibrational
bands for CdXe are listed in Table 1.

3.2 CdKr

The ground-state potential curve of CdKr has a mini-
mum at Re = 8.20a0 (8.18a0 [2]) with De = 145 cm−1

(130 cm−1 [25]). In turn the A30+ potential is character-
ized by De = 568 cm−1 (529 cm−1 [4]) and Re = 6.24a0

and behaves regularly versus R in the entire internuclear
separation range. Both the potential curves along with se-
lected vibrational wavefunctions are shown in Figure 3.
Figure 4a presents the appropriate Franck-Condon fac-
tors. As seen from the figure, the A(v′) ← X(v′′ = 0)
transitions in CdKr can take place only for v′ ranging at
most from 6 to 14. The total number of vibrational lev-
els calculated for the A30+ state of CdKr amounts to 33.
Comparing the diagram from Figure 4a with the corre-
sponding experimental fluorescence excitation spectrum
reported by Kvaran et al. [4] one can easily see that the
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Table 1. Calculated frequencies of vibrational transitions for
CdXe.

A 30+ ← X 10+ B 31← X 10+

v′ ← v′′ ν̃ (cm−1) ∆G (cm−1) ν̃ (cm−1) ∆G (cm−1)

10← 0 30679.6
24.0

11← 0 30703.6
19.0

12← 0 30722.5
10.6

13← 0 30382.6 30733.1
32.6 5.6

14← 0 30415.2 30738.8
31.2

15← 0 30446.4
29.9

16← 0 30476.3
28.5

17← 0 30504.8
27.2

18← 0 30532.0
25.9

19← 0 30557.9
24.6

20← 0 30582.6
23.3

21← 0 30605.9
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Fig. 3. Potential curves for the ground X1Σ+ and two excited
A30+ and B31 states of CdKr.

theoretical prediction of this spectrum nearly exactly re-
produces its experimental counterpart, provided that the
theoretical v′ = 6← v′′ = 0 transition is ascribed to their
last detectable A(v′ = 4)← X(v′′ = 0) band lying on the
long-wavelength side of the atomic line. As seen, even rel-
ative intensities of both the progressions are in excellent
agreement. Concerning the results reported by Czajkowski
et al. [7], it seems that our very weak v′ = 5 ← v′′ = 0
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Fig. 4. Calculated Franck-Condon factors for: (a) A0+(v′)←
X(v′′ = 0), (b) B1(v′)← X(v′′ = 0) transitions in CdKr.

band might correspond to their v′ = 3← v′′ = 0 band (cf.
Fig. 5 in [7]) undetected, however, by the former authors.
The B31 potential curve for CdKr proves to be of most
interest due to its double minimum. The inner potential
well being the result of SO interaction has a minimum
characterized by De = 145 cm−1 and Re = 6.37a0. This
minimum is separated from an outer shallow minimum
(De = 77 cm−1, Re = 9.38a0), by a potential barrier lo-
calized near R = 8.5a0. Such a shape of the B31 potential
curve has undoubtedly to affect the B ← X spectrum.
Figure 3 also shows the vibrational wavefunctions of the
two (v′ = 2 and 3) nearly degenerated levels. The present
calculations show that the vibrational levels with v′ = 2
and 3 coincide, but are attributed to different potential
wells. According to the Franck-Condon principle, a tran-
sition from v′′ = 0 to v′ = 3 should not take place since
the latter level is associated with the inner potential well
(large ∆Re). Furthermore, the calculated vibrational lev-
els with v′ = 5 and 6 are separated from each other by only
3.8 cm−1. Due to limited resolution of the detection sys-
tem they were likely unrecognizable in the trace of the cor-
responding excitation spectrum reported by Czajkowski
et al. (cf. Fig. 1 in [7]), and were rather seen as one band
slightly broadened from the blue side at the bottom. Fi-
nally, theory predicts in this case a progression consisting
of five vibrational bands covering in fact the v′-range ex-
tending from v′ = 2 to v′ = 8 of a total 23 vibrational
states calculated for the B31 state. The strongest v′ ← v′′

band corresponds to the v′ = 5 ← v′′ = 0 transition.
This prediction agrees entirely with the experimental re-
sults of Czajkowski et al. [7] except for a slightly differ-
ent v′-assignment of the bands which is quite understood,
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Table 2. Calculated frequencies of vibrational transitions for
CdKr.

A 30+ ← X 10+ B 31← X 10+

v′ ← v′′ ν̃ (cm−1) ∆G (cm−1) ν̃ (cm−1) ∆G (cm−1)

2← 0 30719.0
(30706.1)a

3← 0 30719.3
8.0 (8.9)

4← 0 30395.2 30727.0
(30388.3) (30715.0)

33.5 (33.2) 7.0 (8.5)
5← 0 30428.7 30734.0

(30421.5) (30723.5)
31.8 (30.5)

6← 0 30460.6 30737.8
(30452.0) (30731.6)

30.2 (29.1) 7.9 (8.1)
7← 0 30490.8 30742.0

(30481.1) (30739.3)
28.6 (28.1) 5.6 (7.7)

8← 0 30529.4 30747.4
(30509.2) (30746.4)

27.1 (27.1)
9← 0 30546.5

(30536.3)
25.5 (24.7)

10← 0 30572.0
(30561.0)

24.0 (23.5)
11← 0 30596.0

(30584.5)
22.4 (22.5)

12← 0 30618.4
(30607.0)

20.9 (21.0)
13← 0 30639.3

(30628.0)
19.4

14← 0 30658.8

aNumbers in parentheses denote experimental values [7].

inasmuch as these authors ascribed the first detectable
component of the spectrum on the long-wavelength side
of the atomic line to the v′ = 0 ← v′′ = 0 transition. As
can also see from the diagram in Figure 4b, transitions
from v′′ = 0 to higher than v′ = 8 vibrational levels of
the B31 state of CdKr are very weak and experimentally
rather undetectable. The calculated frequencies of the vi-
brational bands for CdKr are gathered in Table 2.

3.3 CdAr

The calculated ground-state potential curve for CdAr is
characterized by the potential well depth De = 107 cm−1

(107 cm−1 [4]) and equilibrium position Re = 8.11a0

(8.13a0 [4]). The A30+ potential curve of CdAr has a min-
imum at Re = 6.37a0 with De = 324 cm−1 (325 cm−1 [4])
and with increasing internuclear separation regularly ap-
proaches the dissociation asymptote. The total number
of vibrational energy levels calculated for the A30+ state
amounts to 18. Both the potential curves are shown in Fig-
ure 5. Figure 6a illustrates the calculated Franck-Condon
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Fig. 5. Potential curves for the ground X1Σ+ and two excited
A30+ and B31 states of CdAr.
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factors for the A30+ ← X10+ transition in CdAr. As seen,
the v′ ← v′′ = 0 theoretical bands corresponding to v′

ranging from 1 to 7 nearly exactly reproduce the experi-
mental results of Kvaran et al. [4] and Bobkowski et al. [6].
In this case, both theory and experiment unambiguously
show that the A ← X excitation spectrum of CdAr con-
sists of seven vibrational bands, although the A30+ poten-
tial well accommodates 18 vibrational levels. The relevant
portion of the calculated B31 potential curve is plotted in
Figure 5. The structured short-range part of the potential
is not displayed here. The potential curve is characterized
by De = 48 cm−1 (56 cm−1 [1]) and Re = 9.62a0 (9.47a0

[1]). The appropriate Franck-Condon factors are shown
in Figure 6b. The total number of calculated vibrational



E. Czuchaj et al.: Theoretical study of the A30+ ← X10+ and B31← X10+ transitions in the Cd-rare gas 351

Table 3. Calculated frequencies of vibrational transitions for
CdAr.

A 30+ ← X 10+ B 31← X 10+

v′ ← v′′ ν̃ (cm−1) ∆G (cm−1) ν̃ (cm−1) ∆G (cm−1)

0← 0 30709.7
(30707.8)a

9.1 (10.6)
1← 0 30485.8 30718.8

(30486.7) (30718.4)
34.5 (35.3) 8.0 (9.3)

2← 0 30520.3 30726.7
(30522.0) (30727.7)

32.0 (31.0) 6.9 (8.4)
3← 0 30552.2 30733.6

(30553.0) (30736.1)
29.4 (28.8) 5.9 (7.0)

4← 0 30581.6 30739.5
(30581.8) (30743.0)

26.9 (27.0) 4.8 (5.9)
5← 0 30608.6 30744.3

(30608.8) (30748.9)
24.5 (25.0) 3.7 (4.9)

6← 0 30633.1 30747.9
(30633.8) (30753.8)

22.0 (22.5) 2.6 (3.5)
7← 0 30655.0 30750.6

(30656.3) (30757.3)
19.6 1.6 (2.4)

8← 0 30674.6 30752.2
(30759.7)

0.7 (1.8)
9← 0 30752.9

(30761.5)
0.3 (0.4)

10← 0 30753.2
(30761.9)

aNumbers in parentheses denote experimental values [6].

levels in the B31 state amounts to 11. As seen from Fig-
ure 6b, the theoretical v′-progression encompasses v′ ←
v′′ = 0 transitions to all the v′-levels generated by the
B31 potential which agrees entirely with the experimental
evidence [6]. The calculated frequencies of the vibrational
bands for CdAr are collected in Table 3.

3.4 CdNe

The calculated ground-state potential curve for CdNe has
a minimum at Re = 7.98a0 (8.14a0 [26]) with De =
34 cm−1 (28.3 cm−1 [26]), but the A30+ potential is
characterized by De = 53 cm−1 (70.5 cm−1 [26]) and
Re = 6.83a0. Both the potential curves are shown in Fig-
ure 7. Figure 8a illustrates the calculated Franck-Condon
factors for the A30+ ← X10+ transition in CdNe. The
total number of calculated vibrational states in the A30+

state of CdNe amounts to 7. However, both theory and
experiment [4–6] show that only three of them partici-
pate in formation of the corresponding vibrational spec-
trum. It turns out that both the theoretical and exper-
imental v′ = 2 ← v′′ = 0 band lies on the blue side
of the Cd (3P1 ← 1S0) atomic line. In turn the calcu-
lated B31 potential curve for CdNe possesses a minimum
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Fig. 7. Potential curves for the ground X1Σ+ and two excited
A30+ and B31 states of CdNe.
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Fig. 8. Calculated Franck-Condon factors for: (a) A0+(v′)←
X(v′′ = 0), (b) B1(v′)← X(v′′ = 0) transitions in CdNe.

at Re = 10.08a0 with De = 10 cm−1 (9.6 cm−1 [26]), as
shown in Figure 7. The B31 potential accommodates three
vibrational levels. Figure 8b illustrates the corresponding
Franck-Condon factors. In the case of the B31 state, the
theoretical prediction disagrees with the experimental re-
sults reported in [6] as to the number of B31← X10+ vi-
brational bands, but is completely confirmed by the very
recent measurements [26]. The calculated frequencies of
the vibrational bands for CdNe are listed in Table 4.

3.5 CdHe

The CdHe complex represents the weakest van der Waals
molecule of the Cd–RG series. To our knowledge, there has
appeared so far the only one experimental work devoted
to this species [10]. The very shallow potential curves for
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Table 4. Calculated frequencies of vibrational transitions for
CdNe.

A 30+ ← X 10+ B 31← X 10+

v′ ← v′′ ν̃ (cm−1) ∆G (cm−1) ν̃ (cm−1) ∆G (cm−1)

0← 0 30638.9 30674.7
(30621.3)a (30670.7)

16.5 (19.7) 4.5 (4.3)
1← 0 30655.4 30679.3

(30641.0) (30675.0)
12.2 (17.2) 2.4 (3.3)

2← 0 30667.6 30681.7
(30658.2) (30678.3)

aNumbers in parentheses denote experimental values [6].
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Fig. 9. Potential curves for the ground X1Σ+ and two excited
A30+ and B31 states of CdHe.

the ground and the lowest lying excited-states of CdHe are
presented in Figure 9. In particular, the calculated X10+

potential curve has the dissociation energy De = 9.0 cm−1

(14.2 cm−1 [10]) and equilibrium position Re = 8.25a0

(8.18a0 [10]). The A30+ and B31 excited-state poten-
tials are characterized by De = 27.5 cm−1 (41.2 cm−1

[10]), Re = 6.75a0 (5.35a0 [10]) and De = 2.2 cm−1

(6.1 cm−1 [10]), Re = 11.30a0 (8.41a0 [10]), respectively.
Both A30+ ← X10+ and B31 ← X10+ transitions take
place very close to the Cd (53P1 ← 51S0) atomic transi-
tion. The whole spectrum spreads out over a small range
of wavelengths about the atomic line. The present cal-
culations predict that the CdHe ground-state potential
supports only one bound vibrational state lying 2.6 cm−1

below the dissociation limit. In turn the A30+ potential
curve accommodates three bound vibrational levels situ-
ated 14.8, 3.2 and 0.2 cm−1 below the dissociation asymp-

Table 5. Calculated frequencies of vibrational transitions for
CdHe.

A 30+ ← X 10+ B 31← X 10+

v′ ← v′′ ν̃ (cm−1) ∆G (cm−1) ν̃ (cm−1) ∆G (cm−1)

0← 0 30643.7 30658.4
(30633.2)a (30661.9)

11.7 (15.4)
1← 0 30655.4

(30648.6)
2.9 (10.7)

2← 0 30658.3
(30659.3)

aNumbers in parentheses denote experimental values [10].

tote for v′ = 0, 1 and 2, respectively. Finally, the very shal-
low B31 potential supports merely one vibrational level
located 0.2 cm−1 below the dissociation limit. The cal-
culated Franck-Condon factors 0.31, 0.66 and 0.01, corre-
spondingly for v′ = 0, 1 and 2 of the A(v′) ← X(v′′ = 0)
transitions indicate that one should expect only two vi-
brational bands on the long-wavelength side of the Cd
atomic line. On the other hand, one band on the short-
wavelength side of the atomic line is predicted as a result of
the B1(v′ = 0)← X(v′′ = 0) transition for which the eval-
uated F-C factor amounts to 0.27. Frequencies of the cor-
responding vibrational transitions from the X10+(v′′ = 0)
level to the upper states of CdHe are gathered in Table 5.
The theoretical prediction for CdHe differs slightly from
the results reported by Koperski and Czajkowski [10].
However, one has to stress that in the case of so weakly
bound molecules like CdHe both theory and experiment
are often encumbered with a relatively large error.

4 Conclusions

Potential energy curves for the Cd–RG van der
Waals molecules have been calculated at the valence
CASSCF/CASPT2 level including SO coupling. The
Cd20+ and RG8+ cores as well as scalar-relativistic effects
and SO interaction were modeled by lj-dependent energy-
consistent pseudopotentials. Quite reasonably good agree-
ment of the calculated potentials with available ex-
perimental data has been obtained for all the Cd–RG
combinations. The calculated vibrational progressions as-
sociated with the A30+ ← X10+ and B31 ← X10+

electronic transitions for the Cd–RG species have been
evaluated exclusively on the basis of the potential curves
obtained. The calculations clearly indicate that for major-
ity of the Cd–RG complexes only selective excitations of
vibrational levels in the A30+ and B31 states take place.
The theoretical v′-progressions for all Cd–RG pairs prove
to be reasonably consistent with their experimental coun-
terparts. The present results are believed to be helpful in
both an identification and a better understanding of the
observed A ← X and B ← X spectra produced by the
Cd–RG van der Waals molecules.
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